Skip to content

Semantic Telemetry SDK — Architecture

Version: 2.0 (Paper 03 Release)
Last updated: January 2026
Audience: Engineers, researchers, auditors


1 Design Philosophy

Geometry Only — all Paper 03 metrics are computed with vector math on embeddings:

  • Cosine similarity, angular distances, centroids
  • No LLM inference required
  • Fast (~50–200 ms per turn)
  • Backend-agnostic (works with any embedding model)

The Semantic Transducer bridges geometry and meaning by projecting embeddings onto the S64 symbolic coordinate system. Paper 03 introduces the concept; Paper 04 will explore it in depth.


2 What It Measures

MetricTypeDescriptionTypical Range
SGIGeometricOrbital radius from context0.5 – 1.5
VelocityGeometricAngular movement per turn0 – 180°
Context PhaseGeometricTopic coherence statestable / protostar / split
Context MassGeometricAccumulated turns in topic0 – N
Context DriftGeometricHow the "sun" is moving0 – 180°
S64 CoordinatesTransducerSymbol & path activations(Paper 04)

3 Semantic Orbital Mechanics

Conversations are modeled as orbital systems:

      ╭─────────────╮
     ╱               ╲
    │   ☀️ Context    │  ← The "sun" (accumulated topic)
    │     (Mass)      │
     ╲               ╱
      ╰──────○──────╯

          Current
          Turn-Pair
  • Context Mass — accumulated turns that form the gravitational center.
  • SGI — how far the current turn is from the context center.
  • Velocity — how fast the conversation moves through semantic space.
  • Context Phase — is the topic stable, forming, or splitting?

4 Turn-Pair Model

Each "turn" is a user message + assistant response pair:

Turn N:
  User:      "What about X?"      → embedding U
  Assistant: "X means..."         → embedding A
  Turn-Pair: mean(U, A)           → embedding P

The SDK tracks:

  • Per-message metrics (individual U and A)
  • Turn-pair metrics (combined P)
  • Context evolution (how the sun moves)

5 High-Level Architecture

┌─────────────────────────────────────────────────────────────────────────┐
│                      AICoevolution SDK (Paper 03)                        │
│                        Geometry-Only Telemetry                           │
├─────────────────────────────────────────────────────────────────────────┤
│  ┌──────────────────────────────────────────────────────────────────┐   │
│  │                      TelemetryEngine                              │   │
│  │   ┌─────────┐  ┌─────────┐  ┌─────────────┐  ┌──────────────┐    │   │
│  │   │   SGI   │  │Velocity │  │Context Phase│  │ Context Mass │    │   │
│  │   └─────────┘  └─────────┘  └─────────────┘  └──────────────┘    │   │
│  └──────────────────────────────────────────────────────────────────┘   │
│                                   │                                      │
│                                   │ HTTP                                 │
│                                   ▼                                      │
└───────────────────────────────────┬─────────────────────────────────────┘


┌─────────────────────────────────────────────────────────────────────────┐
│                  Embedding Sidecar (Separate Service)                    │
├─────────────────────────────────────────────────────────────────────────┤
│   ┌─────────┐  ┌─────────┐  ┌─────────┐  ┌─────────┐  ┌─────────┐      │
│   │  Nomic  │  │ OpenAI  │  │ Google  │  │ Cohere  │  │  S128   │      │
│   │(default)│  │ ada-002 │  │ Gemini  │  │   v3    │  │(future) │      │
│   └─────────┘  └─────────┘  └─────────┘  └─────────┘  └─────────┘      │
└─────────────────────────────────────────────────────────────────────────┘

Key decisions:

  1. SDK = Geometry Only — all Paper 03 metrics use vector math.
  2. Sidecar = External — embedding service is deployed separately, enabling independent scaling and backend switching.
  3. No LLM Required — Paper 03 operates entirely on embedding geometry.

6 API Endpoints

MethodEndpointPurpose
POST/v0/ingestIngest message → instant SGI + Velocity
GET/v0/snapshot/{id}Retrieve cached snapshot
POST/v0/transducerDecompose message → S64 coordinates
POST/v0/transducer/batchBatch decomposition
POST/v1/runsFull session analysis
GET/v1/runs/{id}Poll run status / results
GET/v1/runs/{id}/streamSSE logs

See the SDK Manual for request/response schemas.


7 Metrics Deep Dive

7.1 SGI (Semantic Grounding Index)

SGI = θ(response, query) / θ(response, context)
SGI ValueInterpretation
< 0.7Over-generalizing (context-heavy)
0.7 – 1.3Coherence Region
> 1.3Narrow focus (query-heavy)

7.2 Velocity

Velocity = angular_distance(message_n, message_{n-1})
VelocityInterpretation
< 15°Stagnant
15 – 60°Coherence Region
> 60°Volatile

7.3 Context Phase Detection

StateDetectionDescription
stableTurn-pair within 45° of context centroidTopic anchored
protostar1-2 turns driftingNew topic forming
split3+ consecutive driftsTopic changed

7.4 Context Mass

Accumulated turns in the current context. Higher mass = more gravitational pull = harder to shift topic.


8 Semantic Transducer (Preview)

The Transducer bridges geometry and meaning.

Human Meaning                    Digital Representation
     ↓                                   ↓
"I finally understood"    ──→   [0.23, -0.45, 0.12, ...]
                                        768 dimensions

It decomposes embeddings into interpretable S64 coordinates:

LayerDescription
Symbol Layer180 tokens (e.g., understanding, clarity)
Path Layer64 transformations (e.g., M5: Confusion → Clarity)

Paper 04 will cover energy conversion, domain classification, and path detection in depth.


9 Performance Characteristics

EndpointCold StartIncremental
/v0/ingest~800 ms~200 ms
/v0/transducer~3–5 s
/v0/transducer/batch (20)~25 s
/v1/runs (20 msgs)~10–15 s

Embeddings are cached (24 h TTL). Symbol and path matrices are lazy-loaded once per SDK instance.


10 Paper Series Roadmap

PaperFocusSDK Features
01S64 Symbolic FrameworkSymbol/path definitions
02Embedding Space GeometryS128 model, threshold calibration
03Semantic Orbital MechanicsSGI, Velocity, Context Phase (this release)
04Semantic Depth DetectionDomain classification, path detection (protected)
05+ApplicationsGovernor, Neurodiversity, LRI

11 Further Reading

ResourceLink
SDK Manualdocs.aicoevolution.com/sdk/manual
Integration Guidedocs.aicoevolution.com/sdk/integration
Paper 03Zenodo 10.5281/zenodo.18347569

Maintainer: AICoevolution Research
License: CC BY 4.0