Semantic Telemetry SDK — Architecture
Version: 2.0 (Paper 03 Release)
Last updated: January 2026
Audience: Engineers, researchers, auditors
1 Design Philosophy
Geometry Only — all Paper 03 metrics are computed with vector math on embeddings:
- Cosine similarity, angular distances, centroids
- No LLM inference required
- Fast (~50–200 ms per turn)
- Backend-agnostic (works with any embedding model)
The Semantic Transducer bridges geometry and meaning by projecting embeddings onto the S64 symbolic coordinate system. Paper 03 introduces the concept; Paper 04 will explore it in depth.
2 What It Measures
| Metric | Type | Description | Typical Range |
|---|---|---|---|
| SGI | Geometric | Orbital radius from context | 0.5 – 1.5 |
| Velocity | Geometric | Angular movement per turn | 0 – 180° |
| Context Phase | Geometric | Topic coherence state | stable / protostar / split |
| Context Mass | Geometric | Accumulated turns in topic | 0 – N |
| Context Drift | Geometric | How the "sun" is moving | 0 – 180° |
| S64 Coordinates | Transducer | Symbol & path activations | (Paper 04) |
3 Semantic Orbital Mechanics
Conversations are modeled as orbital systems:
╭─────────────╮
╱ ╲
│ ☀️ Context │ ← The "sun" (accumulated topic)
│ (Mass) │
╲ ╱
╰──────○──────╯
↑
Current
Turn-Pair- Context Mass — accumulated turns that form the gravitational center.
- SGI — how far the current turn is from the context center.
- Velocity — how fast the conversation moves through semantic space.
- Context Phase — is the topic stable, forming, or splitting?
4 Turn-Pair Model
Each "turn" is a user message + assistant response pair:
Turn N:
User: "What about X?" → embedding U
Assistant: "X means..." → embedding A
Turn-Pair: mean(U, A) → embedding PThe SDK tracks:
- Per-message metrics (individual U and A)
- Turn-pair metrics (combined P)
- Context evolution (how the sun moves)
5 High-Level Architecture
┌─────────────────────────────────────────────────────────────────────────┐
│ AICoevolution SDK (Paper 03) │
│ Geometry-Only Telemetry │
├─────────────────────────────────────────────────────────────────────────┤
│ ┌──────────────────────────────────────────────────────────────────┐ │
│ │ TelemetryEngine │ │
│ │ ┌─────────┐ ┌─────────┐ ┌─────────────┐ ┌──────────────┐ │ │
│ │ │ SGI │ │Velocity │ │Context Phase│ │ Context Mass │ │ │
│ │ └─────────┘ └─────────┘ └─────────────┘ └──────────────┘ │ │
│ └──────────────────────────────────────────────────────────────────┘ │
│ │ │
│ │ HTTP │
│ ▼ │
└───────────────────────────────────┬─────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────────────────┐
│ Embedding Sidecar (Separate Service) │
├─────────────────────────────────────────────────────────────────────────┤
│ ┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐ │
│ │ Nomic │ │ OpenAI │ │ Google │ │ Cohere │ │ S128 │ │
│ │(default)│ │ ada-002 │ │ Gemini │ │ v3 │ │(future) │ │
│ └─────────┘ └─────────┘ └─────────┘ └─────────┘ └─────────┘ │
└─────────────────────────────────────────────────────────────────────────┘Key decisions:
- SDK = Geometry Only — all Paper 03 metrics use vector math.
- Sidecar = External — embedding service is deployed separately, enabling independent scaling and backend switching.
- No LLM Required — Paper 03 operates entirely on embedding geometry.
6 API Endpoints
| Method | Endpoint | Purpose |
|---|---|---|
| POST | /v0/ingest | Ingest message → instant SGI + Velocity |
| GET | /v0/snapshot/{id} | Retrieve cached snapshot |
| POST | /v0/transducer | Decompose message → S64 coordinates |
| POST | /v0/transducer/batch | Batch decomposition |
| POST | /v1/runs | Full session analysis |
| GET | /v1/runs/{id} | Poll run status / results |
| GET | /v1/runs/{id}/stream | SSE logs |
See the SDK Manual for request/response schemas.
7 Metrics Deep Dive
7.1 SGI (Semantic Grounding Index)
SGI = θ(response, query) / θ(response, context)| SGI Value | Interpretation |
|---|---|
| < 0.7 | Over-generalizing (context-heavy) |
| 0.7 – 1.3 | Coherence Region |
| > 1.3 | Narrow focus (query-heavy) |
7.2 Velocity
Velocity = angular_distance(message_n, message_{n-1})| Velocity | Interpretation |
|---|---|
| < 15° | Stagnant |
| 15 – 60° | Coherence Region |
| > 60° | Volatile |
7.3 Context Phase Detection
| State | Detection | Description |
|---|---|---|
| stable | Turn-pair within 45° of context centroid | Topic anchored |
| protostar | 1-2 turns drifting | New topic forming |
| split | 3+ consecutive drifts | Topic changed |
7.4 Context Mass
Accumulated turns in the current context. Higher mass = more gravitational pull = harder to shift topic.
8 Semantic Transducer (Preview)
The Transducer bridges geometry and meaning.
Human Meaning Digital Representation
↓ ↓
"I finally understood" ──→ [0.23, -0.45, 0.12, ...]
768 dimensionsIt decomposes embeddings into interpretable S64 coordinates:
| Layer | Description |
|---|---|
| Symbol Layer | 180 tokens (e.g., understanding, clarity) |
| Path Layer | 64 transformations (e.g., M5: Confusion → Clarity) |
Paper 04 will cover energy conversion, domain classification, and path detection in depth.
9 Performance Characteristics
| Endpoint | Cold Start | Incremental |
|---|---|---|
/v0/ingest | ~800 ms | ~200 ms |
/v0/transducer | — | ~3–5 s |
/v0/transducer/batch (20) | — | ~25 s |
/v1/runs (20 msgs) | — | ~10–15 s |
Embeddings are cached (24 h TTL). Symbol and path matrices are lazy-loaded once per SDK instance.
10 Paper Series Roadmap
| Paper | Focus | SDK Features |
|---|---|---|
| 01 | S64 Symbolic Framework | Symbol/path definitions |
| 02 | Embedding Space Geometry | S128 model, threshold calibration |
| 03 | Semantic Orbital Mechanics | SGI, Velocity, Context Phase (this release) |
| 04 | Semantic Depth Detection | Domain classification, path detection (protected) |
| 05+ | Applications | Governor, Neurodiversity, LRI |
11 Further Reading
| Resource | Link |
|---|---|
| SDK Manual | docs.aicoevolution.com/sdk/manual |
| Integration Guide | docs.aicoevolution.com/sdk/integration |
| Paper 03 | Zenodo 10.5281/zenodo.18347569 |
Maintainer: AICoevolution Research
License: CC BY 4.0
