AICoevolution Semantic Telemetry — Standalone Script
Measure conversational dynamics in real-time.
This open-source script demonstrates the core capabilities of the AICoevolution SDK for measuring semantic dynamics in human-AI conversations.
📦 Get the code: github.com/AICoevolution/paper03-orbital-mechanics/open_source
What It Measures
| Metric | Description | Typical Range |
|---|---|---|
| SGI (Orbital Radius) | Balance between query responsiveness and context grounding | 0.5 – 1.5 |
| Velocity | Rate of semantic movement per turn | 0 – 180° |
| Context Phase | Topic coherence state | stable / protostar / split |
| Context Mass | Accumulated turns in current topic | 0 – N |
| Attractor Count | Competing topic centers | 1+ |
Quick Start
1. Install Dependencies
bash
pip install requests2. Get an API Key
Generate a free key at aicoevolution.com/profile → API Keys
3. Run
bash
# Cloud API
python semantic_telemetry.py --api-key YOUR_API_KEY
# Local SDK (if self-hosted)
python semantic_telemetry.py --local
# Custom turn count
python semantic_telemetry.py --api-key YOUR_API_KEY --turns 20Example Output
╔═══════════════════════════════════════════════════════════════════════════════╗
║ SEMANTIC TELEMETRY - AICoevolution SDK ║
╚═══════════════════════════════════════════════════════════════════════════════╝
──────────────────────────────────────────────────
Turn 5/10
──────────────────────────────────────────────────
[YOU]: I'm trying to understand how meaning emerges in conversation
[SDK] <- OK | SGI=0.952, Velocity=34.2°
[AI]: Meaning emerges through the dynamic interplay between what's said
and the accumulated context...
[SDK] <- OK | SGI=0.891, Velocity=28.7°
────────────────────────────── SEMANTIC METRICS ──────────────────────────────
SGI (Orbital Radius): 0.891
Velocity (degrees): 28.7°
Context ID: ctx_1
Context State: stable
Attractor Count: 1
Active Context Mass: 5 turns
──────────────────────────────────────────────────────────────────────Understanding the Metrics
Coherence Region
Productive conversations tend to occupy:
- SGI: 0.7 – 1.3 (balanced orbit)
- Velocity: 15° – 60° (productive movement)
Context Phases
| Phase | Icon | Description |
|---|---|---|
| stable | 🟢 | Anchored to current topic |
| protostar | 🟠 | New topic forming |
| split | 🔴 | Topic changed |
Orbital Energy
E_orb = SGI × Velocity- Higher → more dynamic, potentially unstable
- Lower → more grounded, potentially stagnant
Under Development
Future releases will include:
- Domain Distribution — Cognitive / Somatic / Emotional / Volitional
- Symbolic Depth (S64) — Transformation path detection
- Mass Contribution — Who is steering the conversation?
Learn More
| Resource | Link |
|---|---|
| Paper 03 | Zenodo 10.5281/zenodo.18347569 |
| Website | aicoevolution.com |
| Full SDK Docs | docs.aicoevolution.com |
License
MIT — use freely for research and commercial applications.
Citation
bibtex
@article{jimenez2026orbital,
title = {Semantic Orbital Mechanics: Measuring and Guiding AI Conversation Dynamics},
author = {Jimenez Sanchez, Juan Jacobo},
journal = {Zenodo},
doi = {10.5281/zenodo.18347569},
year = {2026}
}